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Arousal dynamics drive vocal production in marmoset monkeys. J
Neurophysiol 116: 753–764, 2016. First published June 1, 2016;
doi:10.1152/jn.00136.2016.—Vocal production is the result of inter-
acting cognitive and autonomic processes. Despite claims that
changes in one interoceptive state (arousal) govern primate vocaliza-
tions, we know very little about how it influences their likelihood and
timing. In this study we investigated the role of arousal during
naturally occurring vocal production in marmoset monkeys. Through-
out each session, naturally occurring contact calls are produced more
quickly, and with greater probability, during higher levels of arousal,
as measured by heart rate. On average, we observed a steady increase
in heart rate 23 s before the production of a call. Following call
production, there is a sharp and steep cardiac deceleration lasting �8
s. The dynamics of cardiac fluctuations around a vocalization cannot
be completely predicted by the animal’s respiration or movement.
Moreover, the timing of vocal production was tightly correlated to the
phase of a 0.1-Hz autonomic nervous system rhythm known as the
Mayer wave. Finally, a compilation of the state space of arousal
dynamics during vocalization illustrated that perturbations to the
resting state space increase the likelihood of a call occurring. To-
gether, these data suggest that arousal dynamics are critical for
spontaneous primate vocal production, not only as a robust predictor
of the likelihood of vocal onset but also as scaffolding on which
behavior can unfold.

anterior cingulate; autonomic nervous system; default mode; intero-
ception; Mayer wave

NEW & NOTEWORTHY

We investigated the role of arousal during naturally oc-
curring vocal production in marmoset monkeys. The timing
of vocal production was tightly correlated to an autonomic
nervous system rhythm known as the Mayer wave. A state
space of arousal dynamics during vocalization illustrated
that perturbations to the resting state increase the likeli-
hood of a call occurring. Arousal dynamics are critical for
spontaneous primate vocal production, acting as the foun-
dation on which vocal behavior can unfold.

VOCAL PRODUCTION is the result of interacting cognitive and
autonomic processes, similar to those underlying the produc-
tion of facial expressions or other communicative signals
(Gothard 2014). In nonhuman primates (hereafter, primates),
we know that many external factors influence the timing and
likelihood to produce a vocalization (Seyfarth and Cheney
2003). Such factors include an individual’s recent history of
social interactions (Cheney and Seyfarth 1997), strength of

bonds (Kulahci et al. 2015), position in a social hierarchy (Kitchen
et al. 2005), distance from conspecifics (Choi et al. 2015; Fischer
et al. 2001), seeing a predator (Seyfarth et al. 1980), hearing
conspecific calls in general (Ghazanfar et al. 2001; Takahashi et
al. 2013), and hearing calls from a specific individual (Miller and
Thomas 2012). These findings are bolstered by recent neurophys-
iological studies implicating neocortical structures in the produc-
tion of vocalizations (Coudé et al. 2011; Hage et al. 2013; Hage
and Nieder 2013). Whereas the above external factors have been
exhaustively studied, we know very little about how internal,
autonomic processes may influence vocal production in primates.

One autonomic nervous system function is to control the
state of arousal. Arousal is relevant for a range of behaviors
(Pfaff 2006), and an animal would be said to exhibit a high
arousal state if it is more alert to sensory stimuli, more
motorically active, and more reactive (Garey et al. 2003; Pfaff
2006). In the domain of vocal behavior, the focus has been on
linking presumptive arousal level changes to changes in be-
havioral context and, subsequently, to changes in the acoustic
properties of vocalizations. For example, in tree shrews, de-
creasing physical distance between a male and female is
thought to increase arousal levels in the female, resulting in a
higher rate of vocal output (with higher fundamental frequen-
cies; Schehka et al. 2007). Along the same lines, levels of
“response urgency” can be modulated by distance from a
predator, and this is linked to changes in the acoustic structure
of alarm calls in squirrels (Owings and Virginia 1978), mar-
mots (Blumstein and Armitage 1997), and meerkats (Manser
2001). Acoustic changes in cat (Scheumann et al. 2012), bat
(Bastian and Schmidt 2008), and horse (Briefer et al. 2015)
vocalizations were also reported as a response to context-
related arousal fluctuations. In primates, changes in arousal
levels are also repeatedly linked to changes in vocal acoustics
(Hammerschmidt and Fischer 2008; Owren et al. 2011; Ren-
dall and Owren 2009). In baboons, for instance, Rendall (2003)
examined the grunt vocalizations of females in two different
contexts and, within these two contexts, categorized low and
high arousal states based on patterns of movement. He found
that variation according to arousal levels was mainly associated
with changes in the rate of calls produced and their duration, as
well as changes in the fundamental frequency (Rendall 2003).

In the current study, we address a different question with
regard to arousal and vocal production: What mechanism
drives an individual primate to produce a vocalization at all?
To investigate this, we needed a model system that readily
produces vocalizations without the necessity of an external
event such as a conspecific vocalization, predator, or other
overt sensory trigger. Such a context would allow us to focus
solely on how changes in arousal may or may not be linked to
vocal production. The calling behavior of marmoset monkeys
(Callithrix jacchus) meets this criterion (Borjon and Ghazanfar
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2014). When alone, marmoset monkeys vocalize readily and
spontaneously (Bezerra and Souto 2008; Takahashi et al.
2013). Typically, if a conspecific is within hearing range, the
two individuals will take turns exchanging calls (Takahashi et
al. 2013), but if not, the isolated marmoset will continue
calling. Moreover, in this undirected context, nearly all the
calls they produce are a single type of contact call, the “phee”
call. It is a high-pitched vocalization with one or more largely
identical “syllables” (Bezerra and Souto 2008; Takahashi et al.
2013). Because context controls the call type, this allows us the
clearest possible means to investigate how arousal may influ-
ence vocal production.

MATERIALS AND METHODS

Four adult common marmosets (Callithrix jacchus; 3 males and 1
female, average age 5.1 yr) housed at Princeton University were used in
this study. The median number of sessions they participated in was seven
sessions per animal (monkeys 1–4: 9, 3, 9, and 5 sessions, respectively).
All marmosets lived with their pair-bonded mates in family groups and
were born in captivity. They were fed daily with standard commercial
chow supplemented with fresh fruits and vegetables and had ad libitum
access to water. The colony room was maintained at a temperature of
�27°C with 50–60% relative humidity and a 12:12-h light-dark cycle.
All experimental sessions were conducted during daylight hours between
1200 and 1800. All experiments were performed in compliance with the
guidelines of, and were approved by, the Princeton University Institu-
tional Animal Care and Use Committee.

Electromyography. For the experiment, the animal was placed in a
testing box. The testing box was made of Plexiglas and wire in a
triangular prism shape (0.30 � 0.30 � 0.35 m). To record the
electromyographic (EMG) signal, we used two pairs of Ag-AgCl
surface electrodes (Grass Technology). Tethered electrodes were
sewn into a soft elastic band, which was clasped around the animal’s
thorax. One pair of electrodes was affixed to the chest area close to the
heart and the second pair placed on the back, close to the diaphragm.
To improve the signal-to-noise ratio, we applied ECL gel on the
surface of each electrode. If needed, marmosets were shaved around
the thorax. Each pair of electrodes was differentially amplified (�250)
with the resulting signal sent to a Plexon Omniplex, where it was
digitized at 40 kHz and sent to a personal computer for data acquisi-
tion. Recorded sessions were between 20 and 50 min (means � SD,
monkeys 1–4: 21.86 � 11.70, 31.76 � 5.51, 22.63 � 12.32, and
15.44 � 4.86, respectively).

Recording vocalizations. Vocalizations were recorded using a
Sennheiser MKH416-P48 microphone suspended 0.9 m above the
testing box. The microphone signal was sent to a Mackie 402-VLZ3
line mixer whose output was then relayed to the Plexon Omniplex for
acquisition. This ensured the timing accuracy of the vocal signals
relative to the EMG signals. Although marmosets produce a number
of distinct vocalizations in a number of different contexts (Bezerra
and Souto 2008), 99% of the vocalizations recorded in the undirected
context of social isolation used in this study were phee calls, the
species-typical contact call. We used the same criterion we established
in previous work for computationally defining and segmenting phee
calls and their syllables (Takahashi et al. 2013). This and all subse-
quent analyses were conducted in MATLAB 2015a. The segmentation
routine automatically detected the onset and offset of any acoustic
signal that differed from the background noise at a specific frequency
range. To detect the differences, we bandpassed the entire recorded
signal between 5 and 8 kHz for each session. This frequency band
captures the fundamental frequency of phee calls. We then compared
the amplitude of the signal at this frequency band for the periods
without calls and during a call. A simple threshold was enough to
distinguish both periods. Onset-offset gaps longer than 1 s indicated

separate calls, whereas gaps shorter than or equal to 1 s indicated
syllables from the same call. After this procedure, we manually
verified for each call whether the automatic routine correctly identi-
fied single phee calls or combined multiple calls, using the 1-s
separation criteria. Furthermore, we counted the number of syllables
of each call, and if there was any mismatch between the automatic
onset-offset detection and the call observed in a spectrogram, we
marked the onset and offset of the call manually. A total of 427 calls
were produced across a span of 26 sessions (for monkeys 1–4: 192,
29, 120, and 86 calls, respectively).

Heart rate analyses. Surface electrodes along both the ventral and
dorsal thorax of the marmoset can each pick up both heart rate and
respiratory signals. The strength of these signals can vary throughout
a session as the positioning of the surface electrodes changes with the
animal’s movement. Therefore, we sought to screen the quality of the
data and determine which channel exhibited the cardiac signal with
the largest signal-to-noise ratio on a session-by-session basis. This
channel was used for all heart rate analyses for that session. Because
automated methods of detecting and removing noise from these
selected channels were suboptimal, we manually identified and iso-
lated motion artifacts or signal cutoffs. To minimize bias, we did the
following: for each session, signals from both EMG channels were
divided into 10-s segments and signal pairs were presented in random
order for visual inspection. Regions exhibiting signal loss or motion
artifacts were replaced with NaNs (not-a-number; MATLAB).

Following this screening, we down-sampled the data from 40 kHz
to 1,500 Hz to extract the cardiac signals. These signals were then
high-pass filtered at 15 Hz to preserve the rapid waveform of the
heartbeat. To remove line noise, the resulting signal was notch filtered
at 60 Hz. Heart beats were detected using an adaptive threshold of 1-s
duration to find cardiac spikes greater than the 95th percentile of the
amplitude at each second of the signal. Occasionally, the detection of
heartbeats would pick up a spurious spike close to the actual heartbeat.
This would result in a series of spikes occurring with an interspike
timing faster than 100 ms, corresponding to a biologically implausible
600 beats/min. We therefore implemented a speed threshold, whereby
2 spikes occurring in succession quicker than 100 ms were substituted
with a single spike located at the midpoint. It is also possible for the
EMG recording to miss a heartbeat. If any interbeat interval between
spikes was larger than 400 ms (150 beats/min), which is the minimum
heart rate reported in conscious, unrestrained adult marmosets (Sch-
nell and Wood 1993), we replaced the intervening signal with NaNs
to account for the signal loss. To calculate heart rate, we constructed
a binary series of heartbeat counts and convolved the resulting series
with a 1-s Gaussian window. This method is often used in estimating
the instantaneous rate of action potential occurrences in neurophysi-
ological data (Shimazaki and Shinomoto 2010).

Respiratory rate analyses. The same noise control procedure used
to determine the best channel of cardiac activity was used to deter-
mine which channel demonstrated the best respiration signal. Seg-
ments of signals that did not demonstrate a respiratory signal were
excluded from further analysis by being replaced with NaNs. Since we
were interested in physiological signals related to respiration (�3 Hz),
we down-sampled the data from 40 kHz to 50 Hz. To remove the DC
offset, we high-pass filtered the signal at 1 Hz. This resulting signal
was further low-pass filtered at 4 Hz to isolate respiratory activity.
Because mammals, including primates, produce vocalizations using
expiration-driven vocal fold movements (Fitch and Hauser 1995), we
wanted to make sure that the respiratory signal always had a consis-
tent phase relationship with vocal output. That is, we wanted to keep
the expiratory phase of the respiration signal in a consistent orienta-
tion relative to vocal production (so that the beginning of expiration
was the peak of the respiratory curve). To do this, we ensured that the
slope between the point of respiration at call onset and the point of
respiration at the peak call amplitude was negative. The phase coor-
dinates of the respiratory signal were then determined by calculating
the angle of the Hilbert transform of the resulting signal. To calculate
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respiratory rate, we first detected the points in time where the angle of
the Hilbert transform was 0, representing the beginning of expiration.
These time points were converted into a binary representation and
convolved with a 2-s Gaussian window. Again, this method is often
used in estimating the instantaneous rate of spike occurrences
(Shimazaki and Shinomoto 2010).

Call timing and probability measures. We wanted to understand the
relationship between heart rate and call timing on a session level. That
is, we wanted to determine how quickly a call will occur given the
current heart rate at any point during a session. To obtain the heart rate
at a resolution of 1 s, we divided the data into 1-s bins and computed
the average heart rate for each bin. There are considerable differences
in heart rate between individuals (Cacioppo et al. 1994). To normalize
changes in the magnitude of heart rate between our marmoset sub-
jects, we converted the 1-s averages into percentiles (from the 0th
percentile up to the 100th percentile, in bins of 1 percentile). Call
timing relative to each bin of data was determined by measuring the
interval from each bin to the onset of the closest call. To visualize the
average probability curve, we fit the data to a cubic spline using csaps
in MATLAB.

We also wanted to know the probability of observing a call given
a certain heart rate from any point within the session. Using the 1-s
averages, we measured the probability of observing a single call
within 23 s of each bin. This time point corresponds to the minimum
average time interval from each heart rate percentile to the closest
subsequent call, as described in the preceding paragraph. To better
visualize the probability of observing a single call within 23 s, we
grouped the data at 5 percentile steps. To show the slope of the
correlation, we used linear regression to plot the line of best fit. We
calculated the correlation using corr in MATLAB and ran a Spearman
correlation between the averaged data points and heart rate
percentiles.

Index of motor activity. To determine whether a marmoset was
moving and active during the session, we analyzed the videos re-
corded during the experiment (23 of 26 sessions were video recorded
at 30 frames/s using Plexon Cineplex). Each recording was split into
segments of 30 frames. For each segment, we took the absolute
difference between the 1st and 30th frames. This value corresponded
to the difference in pixel luminance between the two frames. A higher
value indicates more of a difference, signifying movement. We
calculated, for each session, the 90th percentile of these pixel values
and used that as a cutoff to construct a binary signal. Values higher
than the cutoff were instances of movement, whereas values below the
cutoff were not.

We manually scored the timing of each vocalization by watching the
muted video. We only marked instances where we could clearly see, via
mouth movements, the beginning and end of a vocalization. The begin-
ning of a vocalization was marked at the frame prior to the animal
opening its mouth. The end of the vocalization was marked at the frame
after closure of the mouth. From this, we accounted for 239 vocalizations
of the 427 used in heart rate and respiratory rate analysis in 23 videos.
Because the video frame rate is at 30 Hz, our identification of call types
had a maximum resolution of 1/30 s. Using the video-marked vocaliza-
tion onsets, we were able to compile data for Fig. 4B.

Population medians, individual medians, and smoothing. To visu-
alize the dynamics of heart rate, respiratory rate, and motor activity
surrounding a call event, we took the median of 40 s before and after
both call onset and offset, and we fit a cubic spline to the data using
csaps in MATLAB (smoothing parameter 0.3 for the population
median and 0.01 for the individual medians).

Bootstrapped permutation tests and confidence intervals. To deter-
mine whether the changes in heart and respiratory rate and motor
activity were significant, we performed a bootstrapped significance
test. For each session, we chose random segments equivalent in
number and length to the calls produced in that session from our data
set. The median of this randomly selected data was calculated and fit
to a cubic spline using csaps in MATLAB. We repeated this process

1,000 times. The 95% threshold for significance corresponds to the
2.5th and 97.5th percentiles of the bootstrapped medians.

Confidence intervals for the medians of heart and respiratory rate
and motor activity were generated by randomly resampling, with
replacement, from the signals used to calculate the plotted medians.
We calculated the median of the resampled signals and fit it to a cubic
spline using csaps in MATLAB. We repeated this process 1,000
times. The 95% confidence interval corresponds to the 2.5th and
97.5th percentiles of the bootstrapped medians.

Linear prediction of heart rate using respiration rate and the motor
index. We sought to linearly predict heart rate from ongoing respira-
tory activity. We first calculated the cross-correlation of heart and
respiratory rate using the median of the data set, and then took the
maximal and minimal peak after 0 s delay. These points indicate the
times at which respiratory rate maximally correlates to heart rate.
Aligned to call onset, the first positive peak occurs at 5 s, whereas the
negative peak occurs at 23.34 s. Aligned to call offset, the first
positive peak occurs at 5.78 s, whereas the negative peak occurs at
21.48 s. We built linear predictors of heart rate from respiratory rate
starting from these points in time. To build them, we calculated the
linear regression between heart rate and respiratory rate. We created
an interval of predicted heart rate by using a bootstrap procedure for
the data aligned to call onset and call offset. For this, we uniformly
and randomly sampled segments of heart rate and the corresponding
respiratory rates. For each pair of segments, we then calculated the
predicted heart rate curve using the associated respiratory rate curve.
This resampling procedure was repeated 1,000 times. The 95%
confidence interval corresponds to the 2.5th and 97.5th percentiles of
the predicted heart rate.

We constructed an analogous linear predictor using the average of
the motion index and the median of the heart rate data. Because the
motion index is gathered at a sampling rate of 1 Hz, we down-sampled
the 50-Hz heart rate median to 1 Hz to match the motion index. We
cross-correlated the down-sampled heart rate median to the mean of
the motion index. Aligned to call onset, the first positive peak occurs
at 6 s, whereas the negative peak occurs at 29 s. Aligned to call offset,
the first positive peak occurs at 8 s, whereas the negative peak occurs
at 32 s. We calculated the linear predictor sequence as described
above. The 2.5th and 97.5th percentiles of the predicted heart rate
were up-sampled to 50 Hz from 1 Hz. Down-sampling and up-
sampling were conducted using the resample function in MATLAB.

Probability density and power spectrum density estimates. To
determine the oscillatory nature of marmoset vocal production, we
first calculated the timing interval (in seconds) between spontaneous
vocalizations for every marmoset. The interval was from the onset of
one call until the beginning of the subsequent call. Using this input
calculated across all animals, we constructed a probability density
function using ksdensity in MATLAB.

To visualize the range of frequencies underlying the dynamics of
the heart and respiratory rate signal, we calculated the power spectrum
density of the signal 25-s before each call onset for every animal and
session. Each signal was detrended and normalized by calculating its
Z score. We used pburg in MATLAB to calculate the power spectrum
density estimates. To calculate the population power spectrum, we
computed the average across all calls.

To calculate the call rate, we constructed a binary equivalent in
length to each of the 26 sessions. This binary was convolved with a
1-s bandwidth Gaussian window and then detrended and Z-scored. We
calculated the average power spectrum density for the resulting
signals using pburg. To allow comparison between the signals, we
normalized all power spectra to their first observed peak.

Phase calculations. To calculate the phase of the heart and
respiration rate, we calculated the angle of the Hilbert transform
for each call. We then calculated a circular phase density plot for
the phase at call onset using circ_ksdensity in MATLAB. A
significance test was constructed by first randomly sampling, for
each session, a number of points equal in number to the number of
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calls. We then calculated the phases of these points for every
session and calculated the distribution of phases using the circular
density plot as before. We repeated this procedure 1,000 times to
obtain the bootstrap confidence interval.

State space plot and multivariate Gaussian distribution fitting. To
understand the cardiorespiratory dynamics underlying vocal pro-
duction, we constructed the state space from the median heart rate
and respiratory rate during a vocalization. We plotted heart rate
against respiratory rate for 25 s before call onset until 20 s after the
call began.

To visualize the scope of cardiorespiratory variability within our
data set, we fit the permuted data set used for the bootstrapped
significance test of heart and respiratory rate variability to a Gaussian
distribution. We first calculated the cardiorespiratory data set’s cova-
riance matrix using cov in MATLAB. We then fit a multivariate
normal Gaussian distribution to the permuted data and calculated
the contours encompassing the 95% confidence interval for the
distribution.

RESULTS

Increases in arousal precede the production of vocalizations
and influence its probability and timing. We used surface
electromyography (EMG) to measure muscle activity around
the thorax of four unrestrained adult common marmosets as
they spontaneously produced contact phee calls in an undi-
rected context (i.e., social isolation). This allowed us to capture
ongoing heart rate simultaneously with respiratory activity, the
latter of which is directly related to mammalian vocal produc-
tion. The undirected context contained no external social sig-
nals, meaning there were no response phee calls produced by
an out-of-sight conspecific, as would typically be the case in a
contact-calling scenario (Takahashi et al. 2013). Figure 1A
shows the standard position of electrodes on the body and an
example of the raw EMG signal recorded during a one-syllable
phee call. An average power spectrum of the EMG signal

across the entire data set reveals two distinct peaks: a slow
frequency associated with respiration and a higher frequency
linked to cardiac activity (Fig. 1B). An adaptive threshold was
used to identify cardiac spike trains in the high-frequency
band, and this was then used to measure heart rate changes. In
the lower frequency band, respiratory peaks were identified
using a Hilbert transform and then converted into respiratory
rate. As in humans (Cacioppo et al. 1994), marmosets exhib-
ited considerable individual differences in the range of heart
and respiration rates. To put these values in a uniform scale, we
normalized each subject’s heart and respiratory rate into per-
centiles. Figure 2A shows the different ranges of heart rate
(monkeys 1–4: 321 � 75, 409 � 39, 388 � 45, and 382 � 55
beats/min, respectively) and respiratory rate [for monkeys 1–4:
85 � 24, 85 � 24, 77 � 19, and 83 � 27 respiratory
cycles/min (rpm), respectively].

If arousal contributes to spontaneous vocal production, we
would predict an interaction between heart rate, a temporally
precise index of arousal state (Gray et al. 2012; Obrist et al.
1970), and the timing and likelihood to vocalize. A total of 427
spontaneous phee calls were recorded during our EMG exper-
iments. Figure 2B shows the negative correlation between time
of vocalization onset and heart rate for both the population and
individual monkeys. The onset of call production was quicker
following epochs of high vs. low heart rates (for population,
Spearman correlation, �0.978, P � 0.001). The exact onset of
call production relative to heart rate is also highly dependent on
the individual animal, with some animals producing calls more
frequently than others. To illustrate this, we have provided
data for each animal in our study. While high heart rate
modulates the timing of vocal onset, it does not provide
information regarding the likelihood of a call occurring after
a given level of cardiac activity. For example, it could be
that at a heart percentile of 90, a vocalization is 50% likely
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Fig. 1. Measuring respiration and heart rate
from electromyographic (EMG) signal. A: sur-
face electrodes were applied to the dorsal and
ventral thorax of an adult marmoset. Signals
were processed through a differential amplifier
(Diff. amp) before being sent to the data acqui-
sition (DAQ) system (PC, personal computer).
An individual exemplar of a vocalization (high-
lighted in turquoise) with nonvocalization peri-
ods is plotted in black. The exemplar comprises
the vocalization’s spectrogram, the amplitude of
the vocalization, and the raw data down-sam-
pled to 1,500 Hz (Amp., amplitude; Freq., fre-
quency; n.u., normalized unit). B: population
power spectral density estimates demonstrating
2 peaks, one representing respiratory rate (0–15
Hz) and another indicating heart rate (6–8 Hz).
The cardiac signal output was isolated; an ex-
emplar heart beat after filtering of the raw data is
shown in the inset. Using an adaptive threshold,
we detected the spikes exceeding the 95% percen-
tile of the signal, converting the spikes into a binary
and convolving it with a 1-s Gaussian kernel,
resulting in ongoing heart rate (bpm, Beats/min).
After isolating the respiratory signal output through
filtering, we calculated the angle of the Hilbert
transform of the respiration signal whereby zero-
crossing points represented respiratory peaks. We
converted these peaks into a binary and convolved
it with a 2-s Gaussian kernel, resulting in ongoing
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to occur quickly, and at a heart rate percentile of 25, a
vocalization is also 50% likely to occur but takes longer to
be elicited. Figure 2C shows a positive correlation between
heart rate and the probability of the phee call being pro-
duced within 23 s of a given heart rate percentile (for
population, Spearman correlation, 0.920, P � 0.001). Thus
the higher the heart rate, the greater the probability of vocal
output. These data show that both the timing and probability
of vocal production are correlated with heart rate.

The baroreceptor pathway does not wholly predict the link
between heart rate changes and vocal production. We next
examined the dynamics of heart rate during the moments
preceding and following the production of a phee call. Phee
vocalizations can differ in their durations (2.03 � 0.96 s); we
therefore plotted the heart rate data aligned to vocalization
onset and offset, separately (Fig. 3A). Red lines indicate epochs
that were significantly different from baseline cardiac activity
(i.e., exceeded a 5% significance level). Marmosets exhibited
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Fig. 2. Relationship between heart rate, respi-
ration rate, and the production of vocaliza-
tions. A: cumulative density plots for each
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green) against its percentile. B: average time
from vocal onset plotted against percentile
heart rate for the population with a cubic
spline fit. At right, individual averages dem-
onstrate the same positive correlation between
time from vocal onset and heart rate percen-
tile. C: average population probability of vo-
calization plotted against heart rate percentile.
At right, probability curves are shown for
each individual animal. Statistics reported are
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an increase in heart rate before vocal production, followed by
a rapid heart rate deceleration. The heart rate increase began
slowly, starting roughly 23 s before the onset of a vocalization.
At vocal offset, the steep deceleration in cardiac activity falls
below the baseline for �10 s. In Fig. 3A, the continuing
increase in heart rate level corresponds to the increases in heart
rate occurring with subsequent phee call production.

Considering that mammalian vocalizations are produced in a
largely similar manner through the utilization of respiratory
power and laryngeal tension (Fitch and Hauser 1995; Ghazan-
far and Rendall 2008), any shared mechanisms across species
are likely to include the baroreceptor pathways. The act of
vocalizing is critically dependent on respiration, and respira-
tory output is linked to cardiac activity via baroreceptor path-
ways (Critchley and Harrison 2013). We wanted to test if the
change in respiration during vocal production could directly
account for the changes we observed in cardiac activity 23-s
before phee call production (Fig. 3A). That is, maybe the vocal
production-related cardiac changes we observed are not related
to arousal, per se, but are the consequence of respiratory sinus

arrhythmia (RSA). RSA is a baroreceptor-driven activity aris-
ing from the interaction between the lungs, the nucleus of the
solitary tract (NTS), and the heart. A signal is transmitted from
the lungs via the vagus nerve to the NTS, where a reciprocal
signal is sent back from the nucleus ambiguus to the heart,
changing its dynamics (Stauss et al. 1997): inspiration (expi-
ration) should increase (decrease) the heart rate. If respiration
decreases, heart rate should increase, and vice versa. Consid-
ering this activity, the cardiorespiratory dynamics during vocal
production could simply be the result of the baroreflex main-
taining compensatory cardiac activity after the subject modifies
its breathing to produce a vocalization. Figure 3B shows that
this compensatory mechanism indeed occurs during vocal
production, when respiration rate significantly (red-lined ep-
ochs) decreases while the heart rate increases. Moreover, at the
offset of the vocalization, when the heart rate is decelerating,
the respiration rate rebounds. However, not everything can be
explained by this compensatory mechanism: For several sec-
onds prior to the vocalization, when heart rate is increasing,
there is no change in the respiration rate.
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Fig. 3. Vocalizations are preceded by an increase
in arousal. A and B: smoothed population medi-
ans of ongoing heart rate (A) and respiration rate
(B) plotted with the 95% bootstrapped confi-
dence interval (CI) of the median. Red line indi-
cates values outside 95% of the bootstrapped
significance test for cardiorespiratory variability.
C: cross-correlation plot of the respiration and
heart rate signals for data aligned to call onset
(black) and call offset (gray). The positive (pur-
ple) and negative (green) peaks of the cross
correlation are denoted with crosses and were
used to construct a linear predictor. D: results of
a linear predictor of heart rate from ongoing
respiration. The smoothed population median of
heart rate is plotted (black) against the 95%
bootstrapped CI of the respiration-predicted
heart rate at its positive (purple) and negative
(green) peak (Pred., predicted).
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To explore the extent of the RSA contributions to the
cardiorespiratory patterns observed around a vocalization
event, we tested if heart rate could be linearly predicted from
respiratory activity when a vocalization is produced. We first
cross-correlated heart and respiratory rate signals (Fig. 3C).
Next, we built linear predictors of heart rate from ongoing
respiratory rate using both the positive and negative peak of
correlation (Fig. 3C). We then created a 95% confidence region
of predicted heart rate for the data aligned to call onset and call
offset (Fig. 3D). When the median heart rate activity is com-
pared with the predicted linear changes in heart rate activity,
both the acceleration before vocal onset and the deceleration at
vocal offset violated this prediction (exceeded a 95% confi-
dence region). Therefore, during vocal production, respiratory
rate fails to predict cardiac dynamics. These results suggest
that cardiac-related interoceptive processes during vocal pro-
duction cannot solely be predicted by the homeostatic interac-
tions between the heart and lungs. Could another indicator of
arousal account for the observed changes in heart rate?

The link between heart rate changes and vocal production is
not wholly predicted by general increases in activity levels.
Across species, changes in general motor activity are consid-
ered to be a reliable indicator of arousal state (Garey et al.
2003; Pfaff 2006). Physical activity is positively correlated
with changes in heart rate, whereby cardiac activity is higher
during movement than quiescence (Obrist et al. 1970). To
determine whether changes in motor activity could predict the

changes in heart rate observed during phee call production, we
calculated a motion index for each animal using video recorded
during the experimental session (Fig. 4A). Figure 4B demon-
strates the trace for the motion index 40 s before and after call
onset. Red lines indicate epochs that were significantly differ-
ent from baseline motor activity at the 5% significance level.
Beginning 10 s before vocal onset, there is a gradual decrease
in motor activity, with the cessation of movement reaching
significance �3 s before call onset. Once the call occurs,
activity resumes. We sought to determine whether we could
predict the observed cardiac dynamics using a linear predictor
analogous to the one we built for cardiorespiratory activity
(Fig. 3, C and D). We constructed predictive regions of heart
rate activity from the positive and negative peak of the cross
correlation between motion and heart rate (Fig. 4C). Movement
could predict the slow increase in cardiac activity but not the
deceleration after call offset (Fig. 4D). This analysis demon-
strates that the increase in heart rate can be predicted by motor
activity occurring 6–8 s before the change in dynamics.
Though predictive of heart rate dynamics before vocal onset, it
is unclear whether the motor activity is causally related, as
increases in cardiac activity during active movement typically
occur instantaneously (within a cardiac cycle) (Obrist 1981;
Smith et al. 1976).

Thus neither respiration nor motion can wholly predict the
fluctuations in cardiac activity. How, then, do patterns of
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Fig. 4. General motor activity partially ac-
counts for fluctuations in arousal during a
vocalization. A: schematic showing how we
calculate the motion index for each animal. B:
smoothed population median of ongoing mo-
tor activity plotted with the 95% bootstrapped
CI of the median. Red line indicates values
outside 95% of the bootstrapped significance
test for motor variability. C: cross-correlation
plot of the motion and heart rate signals for
data aligned to call onset (black) and call
offset (gray). The positive (purple) and nega-
tive (green) peaks of the cross correlation are
denoted with crosses and were used to con-
struct a linear predictor. D: results of a linear
predictor of heart rate from ongoing motor
activity. The smoothed population median of
heart rate is plotted (black) against the 95%
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rate at its positive (purple) and negative
(green) peak.
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cardiorespiratory activity correspond the spontaneous produc-
tion of vocalizations?

Periodic autonomic nervous system fluctuations and vocal
production: the Mayer wave. It is known that neural activity in
the brain is modulated by rhythmic autonomic nervous system
activity (Critchley and Harrison 2013) and that the timing
(phase) of external events relative to these interoceptive
rhythms influence many behaviors (Barrett and Simmons
2015). Such a relationship may exist between rhythmic auto-
nomic nervous system activity and vocal production. We
hypothesized that the drive to produce a vocalization, in the
absence of a relevant and external conspecific signal, is phase-
locked to rhythmic cardiorespiratory activity.

Figure 5A shows an exemplar of a one-syllable phee call
from monkey 4 demonstrating a pronounced rhythmic oscilla-
tion in heart and respiratory rate. Figure 5B is the probability
density of time between the onsets of consecutive vocalizations
and shows that spontaneous vocal production is rhythmic in
nature (Takahashi et al. 2013). Figure 5C shows an average
power spectral density estimate of the period encompassing 40
s before a vocalization for heart rate (blue) and respiration rate
(yellow). There is a peak frequency of 0.07 Hz for heart rate
and 0.099 Hz for respiratory rate. These frequencies fall in the
range of the Mayer wave, the resonant signature of the auto-
nomic nervous system with a periodicity around 0.1 Hz
(�0.04–0.15 Hz) and present in every mammalian species
studied to date (Julien 2006). Thus, in this context, the heart
and respiratory rate rhythms are both products of the Mayer
wave, the rhythmic activity of the sympathetic nervous system.
We also observed a peak frequency of 0.145 Hz for phee call
rate (Fig. 5C, gray). To determine whether there was a rela-
tionship between the observed Mayer wave and call produc-
tion, we calculated the phase of respiration and heart rate
relative to the onset of phee calls. Figure 5D reveals that the
vocalization onset occurs after the peak of the Mayer wave, as

measured by heart rate (blue, left), and just before the trough,
as measured by respiratory rate (yellow, right). For both heart
rate and respiration rate, these clusters around particular phases
exceeded the bootstrapped 95% confidence interval (P �
0.001), and the concentrations of the clusters were also signif-
icant (Cramer-Von Mises test). The onset of a vocalization is
thus preferentially located along a particular phase of the
Mayer wave.

Despite producing vocalizations in an oscillatory manner,
marmosets do not produce a vocalization with every cycle of
the Mayer wave. We hypothesize that this behavioral variabil-
ity implies that the Mayer wave interacts with spontaneous
vocal production in a manner similar to stochastic resonance
(Fig. 5E). Under a model of stochastic resonance (Gammaitoni
et al. 1998), vocal production occurs when a threshold is
reached. The Mayer wave serves as a weak signal that, alone,
is typically unable to reach the threshold and produce a call. If
a source of noise adds to the weak signal, the threshold is
breached and vocal production occurs. In this model, the noise
is unidentified but could be one of the many processes that lead
to a vocalization (see DISCUSSION).

A dynamical systems view of vocal production. Since the
autonomic nervous system is critical for maintaining homeo-
static control in the mammalian body (Loewy and Spyer 1990),
we sought to determine how the observed fluctuations in
autonomic signals during vocal production correspond to base-
line arousal state dynamics. To capture this baseline, we fit a
separate multivariate Gaussian distribution to each pair of the
bootstrapped data set from heart and respiratory rate variability
used in Fig. 3, A and B, and from motor activity in Fig. 4B
(Z-scored medians plotted in Fig. 6A). The circular regions in
Fig. 6, B–D, encompass the 95% confidence interval for each
distribution. Against this baseline region, we plotted in gray the
trajectory for the median of each dynamic for the entire
population. Traces of heart rate, respiration rate, and motor
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activity begin 25 s before call onset, continue for the duration
of the call, and end 20 s after call onset. Figure 6 demonstrates
the state space for the median arousal state for cardiorespira-
tory activity (Fig. 6B), cardiomotor activity (Fig. 6C), and
respiratory-motor activity (Fig. 6D) around the production of a
phee call. Green and red crosses denote the beginning and end
of the trajectory, respectively, whereas the blue and black
arrows signify call onset and the average call offset, respec-
tively. The light blue line between the arrows delineates the
call event. Surrounding the production of a phee call, we see
numerous interactions between motor activity, heart rate, and
respiratory rate. Cardiorespiratory activity oscillates at the
edge of the 95% region of the state space, and �23 s before the
call, the activity leaves the baseline region as heart rate in-
creases, followed by a quick drop in respiratory rate � 2 s
before call onset. This occurs as motor activity is gradually
diminishing. During the call, motor activity has reached its
trough and the direction of the dynamic switches. The dynamic
activity traverses across the state space, returning to the
baseline.

We consider this baseline as an attractor. A vocalization is
produced when the dynamics are driven far away from this
attractor. Thus, during the moments preceding and following a
phee call, the arousal state is driven well outside the expected
range of its variability. These trajectories, therefore, depict
how interoceptive processes can influence spontaneous vocal
production and the extent to which a vocal event, the phee call,
propels the state beyond its typical activity range.

DISCUSSION

We investigated the arousal dynamics related to the sponta-
neous, uncued vocal production in marmoset monkeys. We
exploited the fact that this species readily produces a single

type of contact call, the phee call, within the undirected context
of social isolation. This call is produced with some regularity
(once every 10 s or so) without the need for an external sensory
trigger such as the presence of, or vocalization from, a con-
specific. We show that heart rate influences the timing and
probability of vocal production. Gradual increases in cardiac
activity are observed roughly 23 s before the onset of vocal
production, followed by a rapid and prolonged deceleration in
heart rate of �8 s in duration. The timing of vocal productions
was related to the phase of on-going fluctuations of cardiore-
spiratory activity. These fluctuations were on the order of 0.1
Hz and represented the Mayer wave, a well-established indi-
cator of sympathetic nervous system activity (Julien 2006). It is
important to note that the phee call is only one of several
different calls produced by marmosets, but other types are
heard in different contexts (Bezerra and Souto 2008); our
pattern of results may not generalize to these other call types.

The changes in heart rate that bracket the production of phee
calls by marmoset monkeys are similar to those observed
during human speech. Humans also exhibit an increase in heart
rate before speaking (Linden 1987; Lynch et al. 1980), even
during signed communication by deaf individuals (Malinow et
al. 1986). Interestingly, nonverbal utterances in humans do not
fit this pattern. Mirthful laughter elicited during structured play
does not demonstrate any difference in heart rate before or after
a bout of laughter (Fry and Savin 1988). The cardiac and
respiratory systems are highly intertwined such that the simple
act of breathing air into the lungs temporarily blocks parasym-
pathetic influence on the heart, increasing heart rate (Berntson
et al. 1993). Conversely, exhaling restores parasympathetic
influence on the heart, decreasing heart rate. This dynamic is
known as respiratory sinus arrhythmia (RSA; Bernardi et al.
2001; Berntson et al. 1993), and there is a correlation between
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it and heart rate (Grossman and Taylor 2007). Since producing
a vocalization requires changes in respiration, we tested
whether the heart rate fluctuations before and after vocal
production were simply due to the RSA and could thus be
linearly predicted by ongoing respiration. We found, however,
that respiration rate was insufficient in predicting both the
increase in heart rate and its deceleration surrounding the call
event.

Changes in heart rate before vocal onset were predicted by
general motor activity of the animal; however, a causal rela-
tionship is not clear, because there was a 6- to 8-s delay
between motor movement and heart rate increase. Considering
that active movement typically induces near instantaneous
changes in heart rate (Obrist 1981; Smith et al. 1976), it is
unclear in the current study whether the motor activity is
causally related to the heart rate changes we observed. The
acceleration of heart rate and decrease in motor activity before
vocal onset could be the result of anticipatory effort to produce
a call. However, in human reaction time studies, there is an
observed anticipatory deceleration in heart rate before task
performance (Jennings et al. 1990; Obrist et al. 1969; Somsen
et al. 2004). Functionally, a state of cardiac deceleration
following the production of a contact call implies a state of
reduced arousal. Thus calling in this manner may be as an act
of self-soothing (Gracanin et al. 2014).

The oscillatory signature of the autonomic nervous system,
the Mayer wave, is present in both cardiac and respiratory
measures. The Mayer wave represents perturbations to the
baroreflex (Julien 2006), resulting in an unstable negative
feedback control loop that generates self-sustained oscillations
at its resonance frequency. Most mammals exhibit a range of
�0.04 to 0.15 Hz. We observed a 0.145-Hz frequency of vocal
production across our marmoset subjects and demonstrated that
vocal onset occurs at a preferred phase of the ongoing Mayer
wave. Yet, a vocalization was not produced in every cycle of
the Mayer wave, and this suggests a mechanism akin to
stochastic resonance (Fig. 5E). Stochastic resonance requires
three basic ingredients: 1) a threshold, 2) a weak coherent input
such as a periodic signal, and 3) a source of noise that is
inherent in the system (Gammaitoni et al. 1998). In our
scenario, the Mayer wave is the periodic signal that, with the
addition of as-yet undefined source(s) of input, leads to a
breach in the decision threshold, producing a vocalization with
some probability greater than zero. In scenarios involving more
than one individual, the input signal would include the facial
and/or vocal expressions of conspecifics (Ghazanfar and Taka-
hashi 2014). Considering the relationship between vocal onset
and the ongoing phase of the Mayer wave, an indirect conse-
quence of this slow, pervasive autonomic oscillation is to assist in
the assembly of vocal behavior. Indeed, vocal developmental data
from marmosets suggests that the proper assembly of contact
calling occurs postnatally, with an upward shift of the threshold
(Zhang and Ghazanfar 2016). Infant marmosets in the undirected
context produce vocalizations at almost 10 times the rate of adults,
with a range of immature-sounding call types. After about a
month, they slow the rate of call production and produce phee
calls almost exclusively. The speed with which this transition
from immature to mature phee calls takes place is influenced by
contingent vocal feedback provided by parents (Takahashi et al.
2015, 2016).

We compiled the state space in which the combination of
specific arousal states contribute to the production of a vocal-
ization. The take-home message of that analysis, however, is
not that arousal causes the production of a vocalization, per se,
but that perturbations to the resting state space increase the
likelihood of a call occurring. Such perturbations are in the
context of many other “moving parts” of the system that are
operating on different timescales. For example, hormone levels
influence the production of vocalizations, and vice versa.
Increased cortisol increases alarm calling in macaque monkeys
(Bercovitch et al. 1995). Although there is no link between
cortisol levels and the phee calls produced by marmosets in the
undirected context (Norcross and Newman 1999), the produc-
tion of vocalizations decreases cortisol levels in this species
(Clara et al. 2008; Cross and Rogers 2006). Producing a
vocalization is also metabolically costly, and energy levels are
another factor that can influence vocal production (Ryan 1988).
Moreover, simply hearing the call of another can send the
cardiorespiratory state space into fluctuation (Berntson and
Boysen 1989), and these changes in arousal level may influ-
ence the likelihood of a vocal response and the acoustic
structure of this response (Choi et al. 2015; Takahashi et al.
2013). Thus the production of a vocalization is influenced by
many factors: those occurring at slower timescales (e.g., hor-
mones and energy levels) interacting with those occurring
more quickly (e.g., sensory inputs, cardiorespiratory changes,
neural activity).

In the undirected context studied here, the perturbations of
resting arousal state were represented by three consecutive
events: initial slow increase in heart rate, followed by the
cessation of movement, which is then succeeded by a quick
decrease in respiration rate. Each of these three events drives
the dynamics of the arousal system far away from its baseline
region, resulting in vocal production. In dynamical systems
terminology, the baseline region is an attractor and the vocal-
ization is produced when a perturbation takes the dynamics
away from the attractor. In this scenario, we hypothesize that
the vocalization is a homeostatic mechanism to return the
arousal dynamics to the basin of attraction, and finally into the
attractor region. Thus one could consider vocal production
itself as a form of allostatic control (Berntson and Cacioppo
2007; McEwen and Wingfield 2003) or one parameter of a
cybernetic system whereby compensatory actions (vocal pro-
duction, in our case) offset the effects of disturbances (drifts
away from the resting arousal state) (Pellis and Bell 2011).

The neural pathways for these putative interactions involv-
ing arousal and vocal production overlap to a surprising degree
and provide a viable pathway by which arousal influences
vocal production. At the cortical level, the interoceptive system
consists of a network of areas along the medial wall of the
cerebral cortex, from the cingulate cortex to the ventromedial
prefrontal cortex, as well as laterally into the orbitofrontal
cortex and insula (Barrett and Simmons 2015; Critchley and
Harrison 2013). These visceromotor cortices generate auto-
nomic, hormonal, and immunological predictions to adjust how
the internal systems of the body deploy resources to deal with
the external world in the immediate future (Barrett and Sim-
mons 2015). Collectively, they project subcortically to the
amygdala, ventral striatum, hypothalamus, and the periaque-
ductal grey (An et al. 1998; Barrett and Simmons 2015;
Critchley and Harrison 2013). This network organization over-
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laps with those related to primate vocal communication. The
pathway from the anterior cingulate cortex to periaqueductal
gray is critical for vocal production (Jürgens 2009), and the
insula contains a population of neurons that are exquisitely
selective to conspecific vocalizations (Remedios et al. 2009).
Subcortically, a key structure involved in regulating arousal (as
measured by heart rate) is also critical for vocal production: the
nucleus ambiguus of the reticular formation (Farkas et al.
1997; Jürgens 2009). Thus, on a neuroanatomical level, the
neural systems governing vocal production are inextricably
linked with the autonomic nervous system. Our immediate next
steps are to link the cardiorespiratory dynamics described in
the current study to the neurophysiology of vocal production.
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